M A/M Sc Applied Mathematics, Central University of Jammu Semester-II, End Semester Examination 2017

Course Title: Complex Analysis Time Allowed: 3 hours

Course number: PGAMT2C003T

Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

Section A

- (1) A necessary and sufficient condition that the two complex numbers Z_1 and Z_2 be parallel is
 - (a) $z_1 \times z_2 = 0$.
 - (b) $z_1 \cdot z_2 = 0$.
 - (c) Both (a) and (b).
 - (d) None of the above.

1.5

- (2) Which of the following is true?
 - (a) $|z_1-z_2| \leq |z_1|-|z_2|$.
 - (b) $|z_1 z_2| \ge |z_1| |z_2|$.
 - (c) $|z_1 z_2| = |z_1| |z_2|$.
 - (d) None of the above.

- (3) Let f(z) be an analytic function in a simple connected region R. If a and z are two points in R and $F(z) = \int_a^z f(z)dz$, then
 - (a) F(z) is analytic in R and F'(z) = f(z).
 - (b) F(z) may not be analytic in R and F'(z) = f(z).
 - (c) F(z) is analytic in R and $F'(z) \neq f(z)$.
 - (d) None of the above.

1.5

- (4) Consider the following two statements:
 - (i) If f(z) is analytic in a region R and on its boundary C. Then $\int_C f(z)dz = 0$
 - (ii) If f(z) is continuous in a simply connected region R and $\oint_C f(z)dz = 0$ then f(z) is analytic in R, then
 - (a) Both (i) and (ii) are correct.
 - (b) Only (i) is correct.
 - (c) Only (ii) is correct.
 - (d) None of the above.

1.5

- (5) If f(z) is analytic within and on the boundary C of a simply connected region R, then

 - (a) $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$. (b) $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^2} dz$.

	(c) $f^n(a) = \frac{n!}{2\pi} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$.	
	(d) None of the above.	1.5
(6	3) The winding number of $ z-1 =1$ with respect to $z=3$ is	
	(a) 0.	
	(b) 1.	
	(c) 2.	
	(d) None of the above.	1.5
(7	7) The residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = 1$ is	
	(a) 1.	
	(b) $\frac{1}{2}$.	
	(c) $\frac{1}{3}$.	1 -
	(d) $\frac{1}{4}$.	1.5
(8	8) The radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} (z-1-i)^n$ is	
	(a) 0.	
	(b) ∞.	
	(c) 1	
	(d) n .	1.5
(0	9) Consider the following two statements	
(0	(i) The function $f(z) = e^z$ is conformal at every point in \mathbb{C} .	
	(ii) $g(z) = z^2$ is conformal at $z = 0$, then	
	(a) Both (i) and (ii) are true.	
	(b) Only (i) is true.	
	(c) Only (ii) is true.	
	(d) None of the above.	1.5
(10	O) Consider the function $f(z) = z^3 - 3z + 1$, then	
	(a) $f(z)$ is conformal at $z = \pm 1$.	
	(b) $f(z)$ is not conformal at $z = \pm 1$.	
	(c) $f(z)$ is not conformal at $z=0$.	
	(d) None of the above.	1.5
	Section B	
	Unit - I	
(1	1) Derive an expression for Cauchy-Riemann equations in polar form.	8
(2	2) Show that the real and imaginary parts of an analytic function $f(z) = i$	u + iv
	satisfy Laplace equation.	8
	Unit - II	
	Onit - II	
(3	3) State and prove fundamental theorem of algebra.	8
(4	4) If $f(z)$ is analytic in a simply connected region R. Prove that $\int_a^b f(z)dz$ is	inde-
,	pendent of the path in R joining any two points a and b in R .	8
	Unit - III	
		.40
(5	5) State and prove Morera's theorem.	8
(6	6) State and prove Liouville's theorem.	8
	Unit - IV	
(+		0
(1	7) Find the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 \cdot 4^n}$.	8

(8)	State and prove Jordan's lemma.
	Unit - V
(9)	Show that the composition of two mobius transformations is a Mobius transfor-
	mation.
10)	State and prove Schwartz's lemma.
	Section - C
11)	Define multi-valued function and show that $f(z) = \sqrt{\frac{z}{z-1}}$ is a multi-valued func-
	tion.
12)	State and prove Green's theorem for complex valued function.
13)	State and prove Cauchy's integral formula for higher order derivatives.
14)	Prove that
	$\int_{-\infty}^{\infty} x^3 \sin mx dx = \frac{\pi - ma}{a\sqrt{2}} \cos ma$
	$\int_0^\infty \frac{x^3}{x^4 + a^4} \sin mx dx = \frac{\pi}{2} e^{\frac{-ma}{\sqrt{2}}} \cos \frac{ma}{\sqrt{2}}.$

(15) Prove that the mapping $w = \frac{1}{z}$ transforms circle and straight lines into circle and straight lines.