M A/M Sc Applied Mathematics End-Semester Examination

Course title: Complex Dynamical Systems Course nu

Course number: MAMT-409

Time allowed: 3 hours

Maximum Marks: 100

Instructions for the candidates:

• The question paper consists of three sections, namely, Section A, Section B and Section C.

- The section A consists of 10 objective type questions and all the questions are compulsory in this section.
- The section B consists of 8 short answers type questions, and the candidate has to attempt any 5 questions.
- The section C consist of 10 long answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.

Section-A

- 1. Let 'a' be a fixed point of rational map R, then it is called "indifferent fixed point" if
- (a) |R'(a)| = 1 (b) $|R'(a)| \neq 1$ (c) |R'(a)| > 1 (d) |R'(a)| < 1
- 2. If $R(z) = \frac{az+b}{cz+d}$ where ad bc = 0 then R(z) is
- (a) a map of degree 2 (b) a constant map (c) a zero map (d) none of these
- 3. Attracting fixed points of a rational map R lie in
- (a) Julia set (b) Fatou set (c) closed set (d) none of these
- 4. If f(z) is not injective in some neighbourhood of z_0 then valency of f(z) at z_0 is
- (a) 0 only. (b) 1 only. (c) ∞ only. (d) none of these.
- 5. If $R(z) = \frac{(1+i)z}{(1-i)z+(1+i)}$, then
- (a) $R^n(z) \to 0$, as $n \to \infty$. (b) $R^n(z) \to \infty$, as $n \to \infty$. (c) $R^n(z) \to \infty$, as $n \to 0$. (d) all of these.
- 6. The fixed point(s) of f(z) = mz/(nz + 1)
- (a) is zero only. (b) is one only. (c) are zero and one. (d) none of these.
- 7. A point z is called an exceptional point for a map R if
- (a) orbit of z is singleton only. (b) orbit of z is an infinite set only.
- (c) orbit of z is finite only. (d) z is singular point.

- 8. A rational map $\frac{z^5+7z^2+7}{z^3+4z}$ has
- (a) only two exceptional points (b) infinite number of exceptional points
- (c) only one exceptional points (d) no exceptional point
- 9. If $S = gRg^{-1}$, then for any positive integer n > 1
- (a) $S^n = g^{-1}R^ng$ (b) $S^n = gRg^{-1}$ (c) $S^n = gR^ng^{-1}$
- (d) none of these
- 10. A mobius map A has ∞ as its fixed point if and only if
- (a) A is a polynomial of degree 2. (b) A is a linear map. (c) A is constant. (d) A is a zero map.

Section-B

(5x6 = 30)

- 1. Find a Mobius transformation which maps some specific elements 0, 1, ∞ to m, n, p.
- 2. If f(z) is an injective function in domain $D \Rightarrow v_f(z) = 1 \ \forall \ z \in D$.

Then, show that the converse of above theorem/statement is not true (give an example).

- 3. Show that Julia set $J = C_{\infty}$ or J has empty interior.
- 4. Define the Fatou set and Julia set of a rational map R with mathematical explanation.
- 5. If R be a rational map and \mathbb{R}^n converges uniformly to some constant on a domain D. Prove that $D \subseteq F(R)$.
- 6. If z_1 and z_2 are antipodal points of each other on the complex sphere with centre (0, 0, 0)1/2) and radius 1/2. Show that $z_1.\overline{z_2} = -1$ or $z_2.\overline{z_1} = -1$.
- 7. Prove that a rational map of degree $m \ge 1$ has precisely m + 1 fixed points.
- 8. Let R be a rational map of degree $d \ge 2$. Then, show that $R(D(J) \subseteq D(J))$, where D(J)be the derived set of Julia set *J*.

Section-C

Unit -1

5x12 = 60

- 1. The Mobius map $A(z) = \frac{az+b}{cz+d}$ where ad-bc=1 satisfies the Lipschitz's condition $d_0(A(z), A(w)) \le ||A||^2 d_0(z, w)$ where, $||A||^2 = |a|^2 + |b|^2 + |c|^2 + |d|^2$.
- 2. Discuss the iterations of the Mobius map $M(z) = \frac{az+b}{cz+d}$, $ad-bc \neq 0$.

Unit -2

2. A non-constant rational map D is conjugate to a polynomial iff $\exists z \in C_{\infty}$ with $R^{-1}(z) = \{z\}$.

Unit -3

1. If N be a rational map and K be a Mobius map. Let $S = KNK^{-1}$. Then, show that F(S) = K(F(N)) and J(S) = K(J(N)).

2. Let f_i be a family of analytic maps in a domain D of the complex sphere and

(i) Each $f \in f_i$ does not take the values $a_f b_f c_f$, in domain D.

(ii) Min $\{d(a_f,b_f), d(b_f,c_f), d(c_f,a_f)\} \ge m$; where, m is any positive integer. Then, show that f_i is normal in D.

Unit -4

1. Define exceptional points and backward orbit of rational map. Show that the backward orbit of a point is finite if and only if point is an exceptional point.

2. Let R be a rational map with $deg(R) \ge 2$

I. If z is non-exceptional point then $J \subseteq \overline{o}(z)$

II. If $z \in J \Rightarrow J = \overline{\bar{o}(z)}$

Unit -5

1. If $deg(R) \ge 2$, let F_0 be completely invariant component of F. Then

 $I. \quad D(F_0) = J$

II. F_0 is either simply connected or infinitely connected

III. All other components are simply connected.

IV. F_0 is simply connected iff J is connected.

2. Prove that if Julia set (J) is disconnected then it has infinitely many components.

3