M A/M Sc Applied Mathematics, 2nd Semester, 2015-16 End-Semester Examination

Time allowed: 3 hours Maximum Marks: 100

Instructions for the candidates:

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objetive type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions with one question from each unit and the candidate has to attempt any 3 questions.

Section A

1.	The number of groups of order o (upto isomorphism) is:		
	(a) 1		
	(b) 2 :		
	(c) 3		
	(d) 4 †	1.5	

- 2. Let G be a group such that |G| = 15. Then, which of the following statements is false?
 - (a) G is abelian.
 - (b) G is cyclic.
 - (c) $G \simeq \mathbb{Z}/15\mathbb{Z}$.
 - (d) None of the above.

 $1 \cdot 5$

- 3. The number of groups of order 33 (upto isomorphism) is
 - (a) 4
 - (b) 2
 - (c) 1

(d) 3.	
4. For $n \in \mathbb{N}$, let $p(n)$ denote the ways	1.
(a) 7	ober of partitions of n . Then $p(4)$ is equal to
(b) 5	
(c) 6	
(d) 4	
D. Let $Aut(\mathbb{Z}/9\mathbb{Z})$ denote the group of modulo 9. The	automorphisms of $\mathbb{Z}/9\mathbb{Z}$, the group of integer nents in $Aut(\mathbb{Z}/9\mathbb{Z})$ is
modulo 9. Then the number of elen (a) 4	nents in $Aut(\mathbb{Z}/9\mathbb{Z})$ is
(a) 4	
(b) 6	
(c) 2	
(d) 5	
6. Which of the following statement is	false?
(a) \mathbb{Z}_{12} , the group of integers mod	ulo 12 hor
of the gers has a	Composition sories
(e) 26, the group of integers modu	ilo 6, is solvable.
(d) All of above.	
7. Which of the following statement is	false?
(a) The polynomial ring $\mathbb{C}[x]$ over	the field of complex numbers is a PID.
(b) The polynomial ring $\mathbb{R}[x]$ over t	the field of real numbers has an identity of
(e) The ideal I - {0} C C[x] is no	t a prime ideal.
(d) The ideal $I = \langle x^2 + 1 \rangle \subset \mathbb{R}[x]$	is a maximal ideal in $\mathbb{R}[x]$. $1\cdot 5$
8. Which of the following statement is	
(a) $\mathbb{C}[x]$, the polynomial ring over Ideal Domain.	r the field of complex numbers, is a Principal
(b) \mathbb{Z} is a Principal Ideal Domain.	
(c) $\mathbb{Z}[x]$, the polynomial ring of int	egers, is a Principal ideal domain.
(d) None of the above.	$1\cdot 5$
9. Which of the following statement is	false?
(a) $\mathbb{Q}[x]$, the polynomial ring over domain.	the field of rational numbers, is a Euclidean
(b) $\mathbb{R}[x]$, the polynomial ring over	the field of real numbers is a PID.

(c) $\mathbb{Z}[x]$ is a UFD, but not a PID.

- (d) None of the above.
- 10. Which of the following statement is true?
 - (a) $\mathbb{Z}[x]$ is a UFD, but not a PID.
 - (b) $\mathbb{Z}[x]$ is a PID, but not a Euclidean domain.
 - (c) $\mathbb{Z}[x]$ is a Eulidean domain.
 - (d) All of the above.

 $1 \cdot 5$

Section B

Unit - I

- 1. State first fundamental theorem of group homomorphism. Use it to prove that $\mathbb{R}/\mathbb{Z}\simeq \mathbb{S}^1$, where \mathbb{R} is group under addition of real numbers, \mathbb{Z} is a group under addition of integers and \mathbb{S}^1 is the set of complex numbers of modulus 1 which forms a group under multiplication of complex numbers.
 - 2. Let G be a finite group such that $|G| = p^2$, where p is a prime. Prove that G is abelian. Is a group of order 121 is abelian? Justify your answer.

Unit - II

- 3. Prove that $Aut(S_3) \simeq S_3$, where S_3 is the permutation group on 3 symbols $\{1, 2, 3\}$.
- 4. Prove that A_n , $(n \ge 3)$ is generated by all 3-cycles. Moreover, A_n is generated by 3-cycles of the form $(1\ 2\ k),\ k \geq 3$.

Unit - III

- 5. Prove that a group G is solvabable if and only if $G^{(n)} = \{e\}$ for some n, where $G^{(n)}$ is the nth commutator subgroup of G.
- 6. Define characteristic of a ring. Let R is a commutative ring with identity element h only if $h \cdot 1_R = 0_R$ 1_R . Then prove that ch(R) = n if and only if $n \cdot 1_R = 0_R$.

- 7. Prove that if R is a PID, then, for $a_1, a_2, \ldots, a_n \in R$, the greatest common divi-Prove that if R is a PiD, then, R. Moreover, if d is the greatest common divisor of sor of a_1, a_2, \ldots, a_n exists in R. Moreover, if d is the greatest common divisor of then $d = \alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_n a_n$ for some α . sor of a_1, a_2, \ldots, a_n exists a_1, a_2, \ldots, a_n for some $a_1, a_2, \ldots, a_n \in R$.
- 8. Let $f(x) \in \mathbb{F}[x]$ be a quadratic or cubic polynomial, where \mathbb{F} is a field. Then, prove Let $f(x) \in \mathbb{F}[x]$ is an irreducible polynomial in $\mathbb{F}[x]$ if and only if f(x) has no root in \mathbb{F} . 8 that f(x) is an irreducible polynomial in $\mathbb{F}[x]$ if and only if f(x) has no root in \mathbb{F} . 8

Unit -V

9. Let $f(x), g(x) \in R[x]$, where R is a UFD. Then, prove that

$$cont(f(x) \cdot g(x)) = cont(f(x)) \cdot cont(g(x)).$$

10. Prove that the polynomial $f(x) = x^p + x^{p-1} + \ldots + x + 1$, where p is a prime number,

Section - C

State and prove Cauchy's Theorem.

- 2. State Sylow theorems. Prove that if G is a group of order pq, where p > q are primes, such that q does not divide p-1, then G is cyclic.
- 3. Define a prime and maximal ideal with an example in each case. Consider C[0,1], the ring of continuous real valued functions on closed interval C[0,1] with pointwise addition and multiplication. For $\frac{1}{2} \in [0, 1]$, define

$$M_{\frac{1}{2}} = \{ f \in C[0,1] : f\left(\frac{1}{2}\right) = 0 \}$$

Prove that $M_{\frac{1}{2}}$ is a maximal ideal of C[0,1].

5+10

- 4. Define a Euclidean domain. Prove that $\mathbb{Z}[t]$ is a Euclidean domain. Compute the units in $\mathbb{Z}[\iota]$. 2+9+4
- 5. Define an irreducible polynomial and give an example. State and prove Eisenstein criteria for irreducibility of a polynomial. Deduce that for a prime number $p, x^n - p \in$ $\mathbb{Q}[x]$ is irreducible polynomial in $\mathbb{Q}[x]$.