M A/M Sc Applied Mathematics, 2nd-Semester, 2016 End-Semester Examination

Course title: Partial Differential Equations

Time allowed: 3 hours

Instructions for the candidates:

Course number: PGAMT2E005T Maximum Marks: 100

- The question paper consist of three sections, namely, Section A, Section B and Section C.
- The section A consist of 10 objective type questions, and all the questions are compulsory in this section.
- The section B consist of 10 short answer type questions with 2 questions from each unit, and the candidate has to attempt 5 questions selecting one question from each unit.
- The section C consist of 5 long answer type questions, and the candidate has to attempt any 3 questions.

Section A

- 1. The following is true for the following partial differential equation used in nonlinear mechanics known as the
 - Korteweg-de Vries equation $\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3} 6w \frac{\partial w}{\partial x} = 0$ (a) linear 3rd order (b) nonlinear 3rd order (c) linear 1st order (d) nonlinear 1st order
- 2. A function which satisfies Laplace equation and possess first and second order partial derivatives, is known as (a) Poisson equation (b) the spherical mean (c) wave equation (d) none of these
- 3. Using substitution, which of the following equation is a solution of the partial differential equation $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$?
- (a) $\cos(3x y)$ (b) $x^2 + y^2$ (c) $\sin(3x 3y)$ (d) $e^{3\pi x} \sin(\pi y)$
- 4. A general method for finding the complete intergal or complete solution of a nonlinear PDE of first order of the form f(x, y, z, p, q) = 0. This is known as (a) separable equation (b) Charpit's method (c) Clairaut's method (d) none of the these 1.5
- 5. If the Neumann problem for a bounded region has a solution then it is 1.5 (a) constant in \mathbb{R} (b) unique (c) may not be unique (d) none of these
- 6. If $\delta(t)$ is a continuously differentiable. Dirac delta function vanishing for large t, then $\int_{-\infty}^{\infty} f(t)\delta(t)dt$ is equal to (a) f'(0) (b) f'(a) (c) -f'(0) (d) none of these
- The complete intergal of p(1+q) qz is ln(az-1) = ax by c (c) ln(az-1) = ax + by + c (d) none of (a) ln(az-1) = x + ay + c7. The complete intergal of p(1+q) = qz is these
- $x = \frac{1}{\partial x} + y = \frac{1}{\partial y}$ (b) linear PDF of first order (c) is alomst linear PDF of first order (d) 8. $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz$ is a 1.5 none of these
- 9. The complete intergal of the equation $\sqrt{p} + \sqrt{q} = 1$ is

 (a) $z = ax (1 + \sqrt{a})^2 y + c$ (b) $z = ax + (1 + \sqrt{a})^2 y + c$ (c) $z = ax + (1 \sqrt{a})^2 y + c$ 1.5 (d) $z = ax - (1 - \sqrt{a})^2 y + c$
- 10. Let $u = \psi(x,t)$ be the solution to the initial value problem $u_{tt} = u_{xx}$ for $-\infty < x < \infty$, t > 0 with u(x,0) = 0. $\sin x$, $u_t(x,0) = \cos x$, then the value of $\psi(\frac{\pi}{2}, \frac{\pi}{6})$ is
 - (a) $\frac{\sqrt{3}}{2}$ (b) 1/2 (c) $1/\sqrt{2}$ (d) 1 1.5

Section B Unit I

- 11. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the intergal surface which passes through
- 12. Define complete intergal. Find the complete intergal of the PDE $pqz = p^2(xq + p^2) + q^2(yp + q^2)$. 8

Unit - II

- 13. Find the complete intergal of the PDE $z^2 = pqxy$ by using Charpit Method.
- 14. Reduce the following equation to a canonical form and solve it: $yu_{xx} + (x+y)u_{xy} + xu_{yy} = 0$. 8

Unit - III

- 15. A thin rectangle homogenous thermally conducting plate lies in the xy-plane defined by $0 \le x \le a$, $0 \le y \le b$. The edge y = 0 is held at the transfer of the remaining edges are The edge y=0 is held at the temperature Tx(x-a), where T is a constant, while the remaining edges are held at 0°C. The other faces are included at 0°C. held at 0° C. The other faces are insulated and no internal sources and sinks are present. Find the steady state temperature inside the plate. temperature inside the plate.
- 16. Define Laplace equation and show that $\psi = \frac{q}{|r-r'|}$, q is constant, is a solution of the Laplace equation.

Unit - IV

- 17. Define Dirac Delta function. Prove the following:
 - a). $\int_{-\infty}^{\infty} \delta(t)dt = 1;$
b). $\delta(-t) = \delta(t);$

 - c). $\delta(at) = \frac{1}{a}\delta(t), a > 0;$
 - d). if $\delta(t)$ is a continuously differentiable. Dirac delta function vanishing for large t, then

$$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0).$$

18. The ends A and B of a road, 10cm in length, are kept at temperature 0° C and 100° C until the steady state condition prevails. Suddenly the temperature at the end A is increased to 20° C, and the end B is decreased to 60°C. Find the temperature distribution in the rod at time t.

Unit - V

- 19. Obtain the D'Alembert's solution of the one dimensional wave equation.
- 20. Solve one dimensional wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le \pi$, $t \ge 0$ subject to u = 0 when x = 0 and $x = \pi$ and $u_t = 0$ when t = 0 and u(x, 0) = x, $0 < x < \pi$.

Section - C

- 21. Derive the characteristics equations of first order non-linear partial differential equations. 15
- 22. Define compatible systems of first order equations. Prove that the following PDE's xp yq = x and $x^2p + q = xz$ are compatible and find their solution.
- 23. State and prove Dirichlet problem for a rectangle.
- 24. Define diffusion equation. Solve the one-dimentional diffusion equation in the region $0 \le x \le \pi$, $t \ge 0$, subject to the conditions:
 - i) T remains finite as $t \to \infty$

ii)
$$T=0$$
, if $x=0$ and π for all t
iii) At $t=0, T=\begin{cases} x & \text{if } 0 \leq x \leq \frac{\pi}{2} \\ \pi-x & \text{if } \frac{\pi}{2} \leq x \leq \pi \end{cases}$ 15

25. State and prove uniqueness theorem for the wave equation.

15

8