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Representation of Functions

The simplest method to represent a function is to use point sampling. In
the one dimensional case a real function of one-variable f: I CR — R is
discretized by taking a partition ¢; < to < --- < t,, of the domain interval
I. The representation is given by the vector

Fo = (F(1), £(t2), ... f(t)) € BT

In this way, the space of real functions defined on the interval I is
represented by the Euclidean space R™.
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Fourier Analysis q
4 Fourier Transform

Basic properties of Fourier transform

Fourier series

A Fourier series may be defined as an expansion of a 2m-periodic function
f in series by sines and cosines and is given by

f(z)=ao+ Z (ay cos kx + by, sin kx)

k=1
where
1 ™
ag = — f () cos kxdx k=0,1,...
™ —Tr
and
1 (7 .
by = — f(x) sin kxdx k=0,1,...
™ —T
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Example 1

Let f(x) = z,x € [—m, 7). Then the Fourier series of the given function
is given by

-9
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=
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2
f(x):2[sinx—sin;—i—singg—nl
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Example 2

Let f(x) = 22,2 € [—m, 7. Then the Fourier series of the given function
is given by
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Fourier Analysis .
4 Fourier Transform

Basic properties of Fourier transform

Fourier transform

The Fourier transform of any function f(z) € L?(R) is given by

FO =€) = [ e

and its Inverse Fourier transform is

=5 [ s
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Fourier Analysis 5
4 Fourier Transform

Basic properties of Fourier transform

Example(Characteristic function)

Consider the function

1 [t] <a
f) = , a>0.
0 [t] > a

Then the Fourier transform f(£) of f(t) is given by

fo = [ se a2,

— 00

S. D. Sharma Wavelets: Theory and Applications



Fourier Analysis 5
4 Fourier Transform

Basic properties of Fourier transform

Characteristic function and its Fourier transform
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Fourier Analysis 5
4 Fourier Transform

Basic properties of Fourier transform

Gaussian function and its Fourier transform
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Fourier Analysis

Fourier Transform
Basic properties of Fourier transform

Let f,g € L'(R) and «, 3 be any two complex constants. Then the
following properties of Fourier transform hold:

Q Linearity:

Flof(t) + Bg(t)] = Flaf(t)] + FlBg(t)] = af(&) + B4(E).
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Fourier Analysis

Fourier Transform
Basic properties of Fourier transform

Let f,g € L'(R) and «, 3 be any two complex constants. Then the
following properties of Fourier transform hold:

Q Linearity:

Flaf(t) + Bg(0)] = Flaf ()] + FIBg(0)] = af (&) + B3(&).
@ Time shift — frequency modulation:

FIT.f(t)] = FIf(t —a)] = e f(&) = M_o f(€).
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Fourier Analysis

Fourier Transform
Basic properties of Fourier transform

Let f,g € L'(R) and «, 3 be any two complex constants. Then the
following properties of Fourier transform hold:

Q Linearity:
Flaf(t) + Bg(t)] = Flaf (0)] + FlBg(t)] = af(§) + B9(E).
@ Time shift — frequency modulation:

FIL.f(0] = FIf(t = a)] = e f(€) = M_o f(&).
© Scaling: For a # 0,

F D1 )

a

—D.f© =721 (£).
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Properties Contd...

4. Exponential modulation — frequency shift:

FIMof(t)] = Fle™ f(t)] = f(§ —a) = T.f(£).
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Properties Contd...

4. Exponential modulation — frequency shift:

FIMof(t)] = Fle™ f(t)] = f(§ —a) = T.f(£).

5. Change of roof:

/ " gty = / e,
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Drawbacks of Fourier transform

@ It is suitable only for stationary signals.
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Drawbacks of Fourier transform

@ It is suitable only for stationary signals.

@ It measures the frequency content of a signal globally, i.e.,
throughout the entire domain R.
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Fourier Analysis Fourier Transform

Basic properties of Fourier transform

Drawbacks of Fourier transform

@ It is suitable only for stationary signals.
@ It measures the frequency content of a signal globally, i.e.,
throughout the entire domain R.

@ It does not give any information regarding to measure the position
and momentum of particle simultaneously at a particular point.
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Gabor Analysis Limitations of STFT

A Walk in The Physical Universe

Our purpose is to obtain a transform that enables us to perform a local
computation of the frequency density. The inspiration for this transform
is to analyze the audio analysis performed by our auditory system.
Consider for this an audio signal represented by a real function f of one
variable (time).
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Gabor Analysis Limitations of STFT

A Walk in The Physical Universe

Our purpose is to obtain a transform that enables us to perform a local
computation of the frequency density. The inspiration for this transform
is to analyze the audio analysis performed by our auditory system.
Consider for this an audio signal represented by a real function f of one
variable (time).

@ Real time analysis: The audio information we receive occurs
simultaneously on time and frequency. This means that the signal f
is transformed by the auditory system in a signal f(t,w) that
depends on the time and the frequency.
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Gabor Analysis Limitations of STFT

@ Future sounds are not analyzed: This means that only values of
f(t) for t < t; can be analyzed when computing the transform

ft,w).
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Gabor Analysis Limitations of STFT

@ Future sounds are not analyzed: This means that only values of
f(t) for t < t; can be analyzed when computing the transform

ft,w).

@ The auditory system has finite memory: That is, sounds that we
have heard some time ago do not influence the sounds that we hear
in a certain instant of time. This means that there exists a real
number ¢y > 0 such that the computation of the transform f(t,w)
depends only on the values of ¢ on the interval [t — tg, ].
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Gabor Analysis Limitations of STFT

Mathematically, the last two properties show that the modulating
function used to detect frequencies in the computation of the transform

f(t,w) must have its values concentrated in a neighborhood of t. We say
that it is localized in time. D. Gabor, was the first to propose a transform

with the above properties.
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Gabor Analysis Limitations of STFT

Window function

A non-trivial function g(x) € L?(R) is called a window function if
tg(t) € L2(R). An example of such a window function is the Haar

function.
1, 0<t<1/2

fy=¢ -1, 1/2<t<1

0, otherwise
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Gabor Analysis Limitations of STFT

Window function(Haar function)

wi(t)

O 1/2 1
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Gabor Analysis Limitations of STFT

Windowed Fourier transform

We define the Windowed Fourier transform of a function f € L?(R) with
respect to a windowed function g evaluated at a location (b,w) in the
time-frequency plane as

Gof0.) = [ I0GTE= D
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Gabor Analysis Limitations of STFT

Advantage over Fourier transform

Unlike the case of Fourier transform in which the function f must be
known for the entire time axis before its spectral component at any single
frequency can be computed,short-time Fourier transform(STFT) or
windowed Fourier transform needs to know f(t) only in the interval in
which g(t — b) is non zero.
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Gabor Analysis Limitations of STFT

Time-frequency window for STFT

® 24,
oF,
£
2A
('31 SR e
s
@y 24,
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Gabor Analysis Limitations of STFT

@ Unfortunately there is a limit to the localization precision in the
time-frequency domain.
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Gabor Analysis Limitations of STFT

@ Unfortunately there is a limit to the localization precision in the
time-frequency domain.

@ This limitation comes from a general principle that governs the time
frequency transforms. This is the uncertainty principle. In simple
terms the statement of this principle is: We can not obtain precise
localization simultaneously in the time and frequency domains.
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Gabor Analysis Limitations of STFT

@ Unfortunately there is a limit to the localization precision in the
time-frequency domain.

@ This limitation comes from a general principle that governs the time
frequency transforms. This is the uncertainty principle. In simple
terms the statement of this principle is: We can not obtain precise
localization simultaneously in the time and frequency domains.

@ The intuition behind this principle is simple: To measure frequencies
we must observe the signal for some period of time.
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Gabor Analysis Limitations of STFT

@ Unfortunately there is a limit to the localization precision in the
time-frequency domain.

@ This limitation comes from a general principle that governs the time
frequency transforms. This is the uncertainty principle. In simple
terms the statement of this principle is: We can not obtain precise
localization simultaneously in the time and frequency domains.

@ The intuition behind this principle is simple: To measure frequencies
we must observe the signal for some period of time.

@ The more precision we need in the frequency measurements the
larger the time interval we have to observe.
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Gabor Analysis Limitations of STFT

The windowed Fourier transform introduces a scale (the width of the
window), and analyzes the signal from the point of view of that scale. If
the signal has important frequency details outside of the scale, we will
have problems in the signal analysis:

S. D. Sharma Wavelets: Theory and Applications



Gabor Analysis Limitations of STFT

The windowed Fourier transform introduces a scale (the width of the
window), and analyzes the signal from the point of view of that scale. If
the signal has important frequency details outside of the scale, we will
have problems in the signal analysis:

o If the signal details are much smaller than the width of the window,
we will have a problem similar to the one we faced with the Fourier
transform: The details will be detected but the transform will not
localize them.
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Gabor Analysis Limitations of STFT

The windowed Fourier transform introduces a scale (the width of the
window), and analyzes the signal from the point of view of that scale. If
the signal has important frequency details outside of the scale, we will
have problems in the signal analysis:

o If the signal details are much smaller than the width of the window,
we will have a problem similar to the one we faced with the Fourier
transform: The details will be detected but the transform will not
localize them.

o If the signal details are larger than the width of the window, they
will not be detected properly.
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Gabor Analysis Limitations of STFT

To solve this problem when we analyze a signal using the windowed
Fourier transform, we must define a transform which is independent of
scale. This transform should not use a fixed scale, but a variable one.
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Examples

. Continuous Wavelet transform
Wavelet Analysis

Where doWavelets Fit?

In order to understand the role of the wavelets in the scenario of
computational mathematics, even without understanding what a wavelet
is, we must remember that our major concern is the description,
representation, and reconstruction of functions. The different uses of
wavelets in computationalmathematics, and in particular in computer
graphics, are related with two facts:
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Examples

. Continuous Wavelet transform
Wavelet Analysis

Where doWavelets Fit?

In order to understand the role of the wavelets in the scenario of
computational mathematics, even without understanding what a wavelet
is, we must remember that our major concern is the description,
representation, and reconstruction of functions. The different uses of
wavelets in computationalmathematics, and in particular in computer
graphics, are related with two facts:

@ Representation and reconstruction of functions;
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Examples

. Continuous Wavelet transform
Wavelet Analysis

Where doWavelets Fit?

In order to understand the role of the wavelets in the scenario of
computational mathematics, even without understanding what a wavelet
is, we must remember that our major concern is the description,
representation, and reconstruction of functions. The different uses of
wavelets in computationalmathematics, and in particular in computer
graphics, are related with two facts:

@ Representation and reconstruction of functions;

@ Multiresolution representation, a problem that consists in
representing the graphics object in different resolutions.
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Examples
Continuous Wavelet transform

Wavelet Analysis

@ To solve this problem when we analyze a signal using the windowed
Fourier transform, we must define a transform which is independent
of scale. This transform should not use a fixed scale, but a variable
one.
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Examples
Continuous Wavelet transform

Wavelet Analysis

@ To solve this problem when we analyze a signal using the windowed
Fourier transform, we must define a transform which is independent
of scale. This transform should not use a fixed scale, but a variable
one.

@ The scale is defined by the width of the modulation function.
Therefore we must use a modulation function which does not have a
fixed width.Moreover the function must have good time localization.
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Examples

Wavelet Analysis Continuous Wavelet transform

Wavelet

A function ¢ € L*(R) is called a basic wavelet or mother wavelet if the

following condition X
= (P
— < 0
/_oo €]

is satisfied where 1)(€) is the Fourier transform of 4 (t). This condition is
known as the admissibility condition.

S. D. Sharma Wavelets: Theory and Applications



Examples
Continuous Wavelet transform

Wavelet Analysis

Wavelets are mathematical functions which are generated by the dyadic
dilations and integer shifts a single function called a mother wavelet and
are defined by

1

z/J<t_b>,a,beR,a7é0
a

wa,b(t) = \f a
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Examples
Continuous Wavelet transform

Wavelet Analysis

Wavelets are mathematical functions which are generated by the dyadic
dilations and integer shifts a single function called a mother wavelet and
are defined by

1

Vap(t) = —=1 (t_b>, a,beR, a#0

va a

where a is called a scaling parameter which measures the degree of
compression or scale, and b is a translation parameter which determines
the time location of the wavelet.
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Wavelet Analysis

'nnples
Contir s Wavelet transform

Haar Wavelet and its Fourier transform

12
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Examples
. Continuous Wavelet transform
Wavelet Analysis

Mexican hat Wavelet and its Fourier transform
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Examples
Continuous Wavelet transform

Wavelet Analysis

The continuous wavelet transform Wy, of a function f € L*(R) with
respect to wavelet ¢ is defined as

W (@d) =, os) = [ " HOPea D,
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Examples

Wavelet Analysis Continuous Wavelet transform

Time-frequency window for continuous wavelet transform

A Eaﬂ,ﬂu
w =
+ 2
w/a, A,
3 o) / a
-.tIIAv 2
. 2a,,, 2
) .-’al . —f_\y
a
) | 2 A
W /a — A
o - Za| |
> |
o by + a b, + a,t" bty
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Examples
Continuous Wavelet transform

Wavelet Analysis

Inverse wavelet transform

The inverse wavelet transform is given by

dadb

1) = //W¢fab>wab(>

where

g [T BOE
C¢—27r/_oo €] <0

is known as admissibility condition.
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