Course Title: Plant Genetic Engineering and Omics

Assessment	
Maximum marks	100
Continuous Internal Assessment (CIA)	25
Mid Semester Exam (MSE)	25
End Semester Exam (ESE)	. 50
Passing Marks	50

Course objectives: To acquaint the students to the versatile tools and techniques employed in genetic engineering and recombinant DNA technology. The student will achieve a sound knowledge on methodological repertoire which allows them to innovatively apply these techniques in basic and applied fields of life science research.

Theory

Unit 1: Advanced tools in plant genetic engineering

Introduction to plant genetic engineering –restriction enzymes –Protein engineering of restriction enzymes; Vectors - New-generation vectors for transgenic Plants - GATEWAY-Compatible binary Vectors; Destination vectors; GATEWAY-Compatible MicroRNA vectors; Tissue-Specific and Stress-Inducible Binary vectors; Vectors for virus-induced gene silencing; Gene-editing by expression of developmental regulators and *de novo* meristem induction in plants; RNA viruses and mobile guide RNAs for heritable plant gene-editing; Nanoparticles for delivering biomolecules to facilitate plant genome engineering; Cloning vectors for higher organisms; Commercially available plasmids; transcriptional terminators; Vectors for plants; expression vectors;

Unit 2: Plant genetic transformation

Plant transformation vectors - T-DNA and viral vectors; plant transformation by Agrobacterium sp; non-Agrobacterium sp; and *in planta* transformation; molecular mechanism of T-DNA transfer; direct gene transfer methods in plants - gene gun and other methods; chloroplast transformation; transgene analysis; silencing and targeting; marker-free and novel selection strategies; multigene engineering; gene knock-down by ribozymes; antisense RNA and RNA interference; Marker-Free Transgenic Plants; Plastid genome

Page 6 of 17

terry &

9

engineering; Plastid bioreactors for molecular farming; Plastid as a biofactory for Industrially Important products

Unit 3: Applications of plant transgenic technology

Transgenic crops for resistance against biotic and abiotic stresses; engineering crops for male sterility and modification of flower colour/pattern; fruit ripening and senescence; GM crops for nutritional quality and quantity; RNAi-mediated crop improvement; molecular farming; metabolic engineering and hairy root culture for secondary plant products; global status and biosafety of transgenic plants. Transgenic Crops in Virus Management- Nucleic Acid-Mediated Resistance (NAMR); Artificial MicroRNA (amiR)-Mediated Resistance Key Challenges in Developing Products from Transgenic Plants- Plant Tissues Used for Expression of Recombinant Proteins; Expression Systems; Production of Therapeutic Proteins in Plants

Unit 4: Computational and Machine learning in botany

Computational botany-Introduction, morphometrics, morphometric analysis of leaves, flowers and other organs, feature extraction-Leaf shape, texture and margins, image recognition of plant- artificial intelligence, Machine Learning Techniques in Plant Biology machine-learning applications for studies in plants, machine learning methods and modelling techniques, machine learning for plant leaf analysis, limitations of machine learning.

Unit 5: Plant Omics

Omics- history and prospects omics; Omics of Model Plants; Next-Generation Sequencing and Assembly of Plant Genomes; Genome Assembly Algorithms; Biological Applications of Next-Generation Sequencing; Cytogenomic Techniques-Chromosome Biology, and Genome Analysis; miRNomics- Plant Gene Regulation by miRNAs; Role of miRNA in Plants; Phénomics: Applications in Plant and Agriculture; Plant Cytomics and applications; Chloroplast and Mitochondrial Omics; Micromorphomics; Microbiomics; Plant Pharmacogenomics Bioinformatics and Nanobiotechnology in agricultural development.

Suggested readings:

- 1. Genes VI: Benjamin Lewin. Oxford University Press, Oxford, 1997.
- 2. Genes VII: Benjamin Lewin. Oxford University Press, Oxford, 2000.

Page **7** of **17**

*

JSSSSba

8

- Knowler, J.T., Leader, D.P. and Adams, R.L., 1986. The Biochemistry of the Nucleic Acids. Chapman & Hall.
- Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D., 1999. Molecular Biology of the Cell, 477–485.
- 5. DNA cloning 1: A Practical approach: Core techniques, 2nd Edition. IRL Press, 1995.
- 6. Shaw, C.H. ed., 1988, Plant Molecular Biology: A Practical Approach. IRL Press.
- Barh, D., Khan, M. S., Davies, E., 2015. PlantOmics: The Omics of Plant Science. Springer India
- Bánerjee, R., Kumar, G. V., Jeevan Kumar, S. P., 2019. OMICS-Based Approaches in Plant Biotechnology. Wiley publishers
- Sathishkumar, R., Sarma, R. K., Jagadeesan, H., Venkidasamy, B., 2019 Advances in Plant Transgenics: Methods and Applications. Springer Nature Singapore Pvt. Ltd.
- Santos, D. M., 2011. Genetic Engineering -Recent Developments in Applications. Apple Academic Press.
- Rajagopal, K., 2012. Recombinant DNA Technology and Genetic Engineering. Tata McGraw Hill Education Private Limited

of fr.

Page **8** of **17**

Juleh-

0

Practical's Plant Genetic Engineering and Omics Lab.

Assessment	
Max; Mark	50
Continuous Internal Assessment (CIA)	25
End Semester Exam (ESE)	25
Passing Marks	. 25

- To isolate the nucleic acids from different sources.
- To analyse the restriction enzyme digestion of DNA and calculation of molecular , weight of the digested DNA.
- To study the DNA amplification by PCR method.
- 4. To prepare the competent cells in E. coli.
- 5. To study bacteria transformation through CaCl₂ and PEG methods.
- 6. To study the methods of western and southern blotting.
- 7. To isolate and purify the plasmids DNA of bacteria and yeast.
- 8. To study the electrophoretic separation of plasmid DNA by agarose gel electrophoresis.
- To Quantify and assess the quality of DNA by UV spectrophotometry and electrophoresis.
- 10. To analyse restriction and construction of restriction map of plasmid DNA.
- 11. To construct of recombinant plasmid.
- 12. To study the screening of transformed cells for the presence of recombinant plasmid and gene.
- 13. To study of transformation frequency and cloning efficiency.

Page 9 of 17

Jeststen &