DATABASE MANAGEMENT SYSTEMS (DBMS)

Course Code: BECSE2C022 / BECCS2C022

Course Title: DATABASE MANAGEMENT SYSTEMS

Semester: IV Credits: 04

Rationale

The study of DBMS is essential for acquiring the skills needed to manage data effectively, support organizational processes, and contribute to informed decision-making in the digital age. The role of DBMS in also seen in supporting and streamlining various business processes by providing a centralized and structured data repository.

Course Outline

Contents	No. of
	Lectures
Unit - I	
Introduction to Database: Definition, Terminology of database, Need for	
Databases, Traditional File Systems Vs Database, DBMS architecture, Data	10
Abstraction, Data Independence, Mapping between layers. Data Models- Network	
model, Hierarchical model, Relational and Object-Oriented Data models. Database	
users, Data dictionary.	
Unit - II	
Relational Model: Introduction and definition of relation, entities, attributes, keys,	
relationships, relational model integrity rules.	10
Entity Relationship Model : E-R Diagrams, Constraints Entity Types, Entity Sets,	
Attributes, Relationships, Relationships Types, Design of an E-R Database	
Schema, Reduction of an E-R schema to relational schemas and vice-versa.	
Integrity constraints over Relations, Aggregation, Generalization and	
Specialization.	
Unit - III	
Relational query languages: Relational algebra and evaluation of relational	
algebra expressions, Relational Calculus: Tuple and domain relational calculus.	10
Database Implementation: Introduction to software-RDBMS, Basic structure,	
Database Structure, SQL- DDL, DML, and DCL, views, Queries in SQL,	
Specifying Constraints in SQL.	
Unit - IV	
Relational Database Design: Normalization- 1NF, 2NF, 3NF, BCNF, 4NF and	10
5NF. Concept of De-normalization and practical problems based on these forms.	
Unit - V	
Transaction Management and Concurrency control: Concept of Transaction,	
States of Transaction and its properties, Need of Concurrency control, concept of	10
Lock, Two phase locking protocol.	
Recovery Management: Need of Recovery Management, Concept of Stable	
Storage, Log Based Recovery Mechanism, Checkpoint.	

Laboratory work:

Students will perform SQL commands to demonstrate the usage of DDL, DML and DCL, joining of tables, grouping of data and will implement PL/SQL constructs.

COURSE OUTCOMES

Upon successful completion of the course the student will be able to:

- 1. Understanding and implement the fundamental database design, including data models, schemas, and relationships.
- 2. Analyze and design database using E-R data model by identifying entities, attributes and relationships.
- 3. Illustrate their technical skills on Structured Query Language (SQL) so as to effectively retrieve, manipulate, and manage data within a relational database.
- 4. Acquire knowledge of mechanisms to ensure data integrity, normalization, accuracy, including constraints and access control.
- 5. Critically comprehend the concepts of transaction management, concurrence control, recovery management and security within a database.

Text Books:

- 1. Silverschatz A., Korth F. H. and Sudarshan S., Database System Concepts, Tata McGraw Hill (2019) 7th Edition.
- 2. Elmasri R. and Navathe B. S., "Fundamentals of Database Systems", Pearson (2016) 7th ed.

Reference Books:

- 1. C.J Date, "An Introduction to Database Systems", Addison-Wesley(2018), 8th Edition.
- 2. Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom, "Database Systems: The Complete Book", Pearson Prentice Hall(2008), 2nd Edition
- 3. Raghu Ramakrishnan and Johannes Gehrke "Database Management Systems", McGraw-Hill Education (2002), 3rd Edition