Deep Learning

Course Code: BECCS3C008
Course Title: Deep Learning

Semester: VI Credits: 03

Rationale

This course provides a comprehensive introduction to deep learning, covering fundamental concepts, practical implementations, and advanced applications. It emphasizes understanding both the underlying mechanics and high-level frameworks. Students will gain hands-on experience by building models from scratch and utilizing modern deep learning algorithms.

Course Outlines

Contents	No. of
	Lectures
UNIT-I Fundamentals of Deep Learning	
History of Deep Learning, Difference between machine learning and deep	
learning, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron	8
Learning Algorithm and Convergence, Multilayer Perceptrons (MLPs),	
Representation Power of MLPs, Sigmoid Neurons.	
Feedforward Neural Networks, Representation Power of Feedforward Neural	
Networks, Autoencoder.	
UNIT-II Optimizing Deep Learning Training	
Backpropagation, Gradient Descent (GD), Momentum based GD, Nesterov	
Accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam.	8
Regularization: Bias Variance Tradeoff, Early stopping, Dataset augmentation,	
Parameter sharing and tying, Injecting noise at input, Dropout, Greedy	
Layerwise Pre-training, Better activation functions, Better weight initialization	
methods, Batch Normalization.	
UNIT-III Convolutional Neural Networks (CNNs)	
Introduction to CNNs – convolution, pooling, Deep CNNs, Different deep CNN	
architectures: LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet,	8
Visualizing Convolutional Neural Networks, Training a CNNs: weights	
initialization, batch normalization, hyperparameter optimization.	
UNIT-IV Recurrent Neural Networks (RNNs)	
Sequence modeling using Recurrent Neural Network (RNNs), Backpropagation	
Through Time (BPTT), Vanishing and Exploding Gradients, Truncated BPTT,	8
Gated Recurrent Units (GRUs), Long Short-Term Memory (LSTM) Cells,	
Solving the vanishing gradient problem with LSTMs	
UNIT-V Generative models	
Encoder Decoder Models, Generative Adversarial Networks (GANs) Attention	8
Mechanism, Attention over images, Hierarchical Attention, Transformers:	
Multi-headed Self Attention, Cross Attention	

Applications of DNN: Application in computer vision, Time series analysis, natural language processing.

Course objectives & learning outcomes:

Upon successful completion of this course, candidates will be able to:

- 1. To understand the fundamental concepts of deep learning and its architecture.
- 2. Design, train and optimize neural networks using advanced techniques.
- 3. Use regularization and optimization techniques to improve model performance.
- 4. Implement various deep neural networks such as Convolutional and Recurrent Neural
- 5. Networks, Transformers etc.
- 6. Apply deep learning to solve real-world problems and evaluate model results effectively.

Text Books/ Reference books

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT
- 2. Press book. 2016.
- 3. Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Springer. 2019.
- 4. Satish Kumar, Neural Networks A Class Room Approach, Second Edition, Tata McGraw-
- 5. Hill, 2013
- 6. Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J Dive into Deep Learning. 2021.