ENGINEERING MATHEMATICS-II

Course Code: BECSE1C020

Course Title: Engineering Mathematics-II

Semester: II Credits: 03

Rationale

To familiarize with the important tools and theorems of integral calculus and transforms essential in all the branches of engineering. It will also develop the in-depth knowledge of types and operations on vector calculus, laplace and fourier transforms.

Course Outlines

Contents	No. of
	Lectures
<u>Unit - I</u>	10
Integral Calculus: Convergence of improper integrals; Beta and	
Gamma integrals; Differentiation under integral sign; Double and	
Triple integrals - computation of surface areas and volumes; change of	
variables in double and triple integrals.	
<u>Unit - II</u>	10
Vector Calculus: Scalar and vector fields; vector differentiation; level	
surfaces; directional derivative; gradient of a scalar field; divergence	
and curl of a vector field;	
<u>Unit -III</u>	10
Laplacian: Line and Surface integrals; Green's theorem in a plane;	
Stoke's theorem; Gauss Divergence theorem.	
Unit - IV	10
Laplace Transforms: Laplace transforms; inverse Laplace transforms;	
Properties of Laplace transforms; Laplace transforms of unit step function,	
impulse function, periodic function; Convolution theorem.	
<u>Unit - V</u>	10
Fourier Transforms: Fourier transformation and inverse transforms - sine,	
cosine transformations and inverse transforms - simple illustrations.	
	ĺ

Course Outcomes

Upon successful completion of this course, candidates will be able to:

- Analyze improper integrals
- Evaluate multiple integrals in various coordinate systems
- Apply the concepts of gradient, divergence and curl to formulate engineering problems

- Convert line integrals into surface integrals and surface integrals into volume integrals
- Apply Laplace transforms and Fourier transforms to solve physical problems arising in engineering.

Text Books

- 1. B. S. Grewal, "Higher Engineering Mathematics", 42nd Edition, Khanna Publications, 2019
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 8th Edition, 2015.

Reference Books

- 1. R. K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics", Narosa Publishing House, 5th Edition, 2016.
- 2. George B. Thomas and Ross L. Finney, "Calculus and Analytic Geometry, Pearson, Ninth Edition, 2020
- 3. Dennis G. Zill, "Advanced Engineering Mathematics", Jones & Bartlett Learning, Sixth Edition, 2018