# Dr. AKSHAY KUMAR

# **Present Address:**

Assistant Professor, Department of Chemistry and Chemical Sciences Central University of Jammu Samba, J&K, India *E-mail*: <u>akshay.che@cujammu.ac.in</u>, <u>akskumar1983@gmail.com</u>, *Contact No.* +91-9888766361

# **Academic Profile:**

| Ph. D.           | 2008-2013 (Guru Nanak Dev University, Amritsar)        |
|------------------|--------------------------------------------------------|
| Thesis entitled: | Development of Primary Amine-Based Organocatalysts for |
|                  | Asymmetric Carbon-Carbon Bond Formation                |
| Supervisor:      | Dr. Swapandeep Singh Chimni (Professor)                |

|                  | <b>Board/University</b> | Year    | %age  | Division |
|------------------|-------------------------|---------|-------|----------|
| M. Sc. Chemistry | Guru Nanak Dev          | 2005-07 | 67.49 | $1^{st}$ |
|                  | University, Amritsar    |         |       |          |
| B.Sc. (Non-Med.) | HPU Shimla              | 2002-04 | 76.47 | $1^{st}$ |

- 4 Qualified **NET** (*JRF-CSIR*) in 2007
- **4** Qualified **GATE** in 2007

#### **Research Interests:**

✤ Asymmetric Catalysis, Organocatalysis, Green Chemistry.

# **Teaching/Research Experience:**

- ✓ March 2023-Till date: Assistant Professor at CU Jammu
- ✓ August 2014-March 2023: Assistant Professor at DAVU Jalandhar
- ✓ January 2014- May 2014: Assistant Professor at GGSWU Fatehgarh Sahib.
- ✓ April 2013 January 2014: Research Associate
- ✓ March 2010 March 2013: Senior Research Fellow
- ✓ February 2008 February 2010: Junior Research Fellow
- ✓ July 2007 January 2008: Trainee Research Associate at Ind. Swift (*Pharmaceutical Company*), R & D Centre, Mohali, Punjab, India.

### Academic Awards/Fellowship/Achievements:

- ✓ Best Poster Award in INDO-US Workshop on Green Chemistry for Environments & sustainable Development held on 11th 13th March, 2012, at Dehradun.
- ✓ Awarded a Research Fellowship from CSIR as Research Associate (RA) for pursuing research in synthetic organic chemistry (April 2013 – Current).
- ✓ Awarded a Research Fellowship from CSIR as Senior Research Fellow (SRF) for doing research toward an advance degree (Ph.D.) (March 2010 – March 2013).
- ✓ Awarded a Research Fellowship from CSIR as Junior Research Fellow (JRF) for doing research toward an advance degree (Ph.D.) (February 2008- February 2010).
- ✓ Qualified Joint CSIR-UGC Test for Junior Research Fellowship and Eligibility of Lectureship (NET) in June 2007.
- ✓ **Qualified Gate Test** in February 2007.

### **Research Activities (Conferences and Symposia):**

- ✓ Poster Presentation on "Development of Primary Amine-Based Organocatalysts for Asymmetric Carbon-Carbon Bond Formation" <u>A. Kumar</u> and S. S. Chimni, at ICCOS conference at Moscow, Russia, 15<sup>th</sup> – 20<sup>th</sup> September, 2012.
- ✓ Poster presentation (*Best Poster Award*) on "Development of an Eco-friendly Protocol to Procure Chiral 3-Alkyl-3-hydroxy-2-oxindoles: A Potential Bioactive Molecule" <u>A. Kumar</u> and S. S. Chimni, at INDO-US Workshop on Green Chemistry for Environments & sustainable Development 11<sup>th</sup> – 13<sup>th</sup> March, 2012, at Dehradun.
- ✓ Poster presentation on "Organocatalyzed Enantioselective Aldol Reaction of Cyclohexanone and Isatin: Synthesis of 3-Cycloalkanone-3-Hydroxy-2-Oxindoles"
  <u>A. Kumar</u> and S. S. Chimni, at National Symposium on Chemistry in 21st Century at Guru Nanak Dev University, Amritsar, December 23-24, 2011,
- ✓ Poster presentation on "Asymmetric syn-Selective Direct Cross-Aldol Reaction Catalyzed by Diamine Organocatalysts Derived from Natural Amino Acid"
   <u>A. Kumar</u> and S. S. Chimni, at 6<sup>th</sup> Junior National Organic Symposium Trust Conference (J-NOST) School of Chemistry, University of hyderabaad, India, January 28 -31, 2011.

#### **Research Publications**

Synthesis

| Sr.<br>No. | Title of the Paper                                                                                                  | Author(s)                                                        | Name of the<br>Journal | Volume | Year | Pages      |
|------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------|------|------------|
| 1          | Recent development in asymmetric<br>organocatalytic domino reactions involving<br>1,6-addition as a key step        | Y. Hussain,<br>Tamanna M.<br>Sharma, A. Kumar,<br>and P. Chauhan | Org. Chem.<br>Front.   | 9      | 2022 | 572-592    |
| 2          | Free Amine, Hydroxyl and Sulfhydryl<br>Directed C-H Functionalization and<br>Annulation: Application to Heterocycle | S. Kumar, A. Kumar,<br>D. Sharma, P.Das                          | Chemical<br>Record     | -      | 2022 | e202100171 |

# Curriculum Vitae

| 3   | Experimental and DFT Studies of<br>Organocatalytic Microwave-Assisted Reaction<br>of Isatin Derivatives with Dinitrotoluenes                           | J. Kaur, N. Islam, A.<br>Kumar, S.S. Chimni                   | Asian Journal of<br>Organic Chemistry              | 6    | 2017 | 575-582         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|------|------|-----------------|
| 4.  | Organocatalytic enantioselective synthesis of<br>C3 functionalized indole derivatives                                                                  | J. Kaur, N. Islam, A.<br>Kumar, V.K. Bhardwaj,<br>S.S. Chimni | Tetrahedron                                        | 72   | 2016 | 8042-8049       |
| 5.  | Organocatalytic enantioselective synthesis of<br>N-alkyl/aryl-3-alkyl-pyrrolidine-2,5-dione in<br>brine                                                | S. Mahajan, P.<br>Chauhan, A. Kumar,<br>S.S. Chimni           | Tetrahedron<br>Asymmetry                           | 27   | 2016 | 1145-1152       |
| 6.  | Catalyst-Free Synthesis of<br>3-Aryl-3-hydroxy-2-oxindole Derivatives by<br>Using Water as the Solvent: Experimental and<br>DFT Studies                | N. Kumar, J. Kaur, A.<br>Kumar, N. Islam, S. S.<br>Chimni     | Asian Journal of<br>Organic Chemistry              | 5    | 2016 | 1334-1344       |
| 7.  | Stereoselective synthesis of<br>3-amino-2-oxindoles from isatin imines: new<br>scaffolds for bioactivity evaluation                                    | J. Kaur, S. S. Chimni,<br>S. Mahajan, A. Kumar                | RSC Advances                                       | 5    | 2015 | 52481-5249<br>6 |
| 8.  | Maleimide as an efficient nucleophilic partner in<br>the aza-Morita-Baylis-Hillman reaction:<br>Synthesis of chiral<br>3-substituted-3-aminooxindoles  | A. Kumar, V. Sharma,<br>J. Kaur, N. Kumar, S.<br>S. Chimni    | Organic and<br>Biomolecular<br>Chemistry           | 13   | 2015 | 5629-5635       |
| 9.  | Synthesis and stereochemistry-activity relationship of chiral thiourea derivatives as potential anticancer agents                                      | V. Kumar, A. Kumar, V.<br>V. Sureshbabu, S. S.<br>Chimni      | Anti-Cancer<br>Agents in<br>Medicinal<br>Chemistry | 14   | 2014 | 910 - 920       |
| 10. | Organocatalytic asymmetric Friedel-crafts<br>reaction of sesamol with isatins: Access to<br>biologically relevant<br>3-aryl-3-bydroxy-2-oxindoles      | A. Kumar, J. Kaur, P.<br>Chauhan, S. S. Chimni                | Chemistry - An<br>Asian Journal                    | 9    | 2014 | 1305-1310       |
| 11. | Organocatalytic enantioselective aza-Henry<br>reaction of ketimines derived from isatins:<br>Access to optically active 3-amino-2-oxindoles            | A. Kumar, J. Kaur, S.<br>S. Chimni, A. K. Jassal              | RSC Advances                                       | 4    | 2014 | 24816-2481<br>9 |
| 12. | Cinchonidine thiourea catalyzed asymmetric<br>addition of phenols to oxindole derivatives                                                              | J. Kaur, A. Kumar, S.<br>S. Chimni                            | RSC Advances                                       | 4    | 2014 | 62367-6237<br>4 |
| 13. | Organocatalytic asymmetric Friedel-Crafts<br>reaction of 1-naphthols with isatins: An<br>enantioselective synthesis of<br>3-aryl-3-hydroxy-2-oxindoles | J. Kaur, A. Kumar, S.<br>S. Chimni                            | Tetrahedron<br>Letters                             | 55   | 2014 | 2138-2141       |
| 14. | Primary-tertiary diamine-catalyzed Michael<br>addition of ketones to isatylidenemalononitrile<br>derivatives                                           | A. Kumar, S. S. Chimni                                        | Beilstein J. Org.<br>Chem.                         | 10   | 2014 | 929-935         |
| 15. | Cinchona-derived thiourea catalyzed<br>hydrophosphonylation of ketimines:<br>enantioselective synthesis of α-amino<br>phosphonates                     | A. Kumar, V. Sharma,<br>J. Kaur, N. Kumar, S.<br>S. Chimni    | Tetrahedron                                        | 70   | 2014 | 7044-7049       |
| 16. | Organocatalyzed direct asymmetric aldol<br>reaction of isatins in water: Low catalyst<br>loading in command                                            | A. Kumar, S. S. Chimni                                        | Tetrahedron                                        | 69   | 2013 | 5197-5204       |
| 17  | . Organocatalytic asymmetric direct aldol                                                                                                              | A. Kumar, S. S. Chimni<br>3                                   | European Journal                                   | 2013 | 2013 | 4780-4786       |

#### **Curriculum Vitae**

|     | reaction of pyruvic aldehyde dimethyl acetal      |                         | of Organic   |    |      |           |
|-----|---------------------------------------------------|-------------------------|--------------|----|------|-----------|
|     | with isatin derivatives                           |                         | Chemistry    |    |      |           |
| 18. | Catalytic asymmetric synthesis of                 | A. Kumar, S.S. Chimni   | RSC Advances | 2  | 2012 | 9748-9762 |
|     | 3-hydroxyoxindole: A potentially bioactive        |                         |              |    |      |           |
|     | molecule                                          |                         |              |    |      |           |
| 19. | Asymmetric syn-selective direct aldol reaction    | Akshay Kumar, Sarbjit   | Organic and  | 9  | 2011 | 2731-2742 |
|     | of protected hydroxyacetone catalyzed by          | Singh, Vikas Kumar,     | Biomolecular |    |      |           |
|     | primary amino acid derived bifunctional           | Swapandeep Singh        | Chemistry    |    |      |           |
|     | organocatalyst in the presence of water           | Chimni                  |              |    |      |           |
| 20. | The pH of the reaction controls the               | S. S. Chimni, S. Singh, | Tetrahedron  | 20 | 2009 | 1722-1724 |
|     | stereoselectivity of organocatalyzed direct aldol | A. Kumar                | Asymmetry    |    |      |           |
|     | reactions in water                                |                         |              |    |      |           |

# **Sponsored Research Projects**

| Sr.<br>No. | Sponsoring Agency | Title of the Project                                                                                                                                                                         | Period  | Amount (Rs) | Principal Investigator /<br>Co-Investigator, If any |
|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-----------------------------------------------------|
| 1.         | DST-SERB          | Development of<br>Organocatalyzed<br>Vinylogous Reactions of<br>Isatin Derivatives for<br>Synthesis of Highly<br>Functionalized<br>3,3'-disubstituted-2-Oxindo<br>les: A Potential Bioactive | 3 Years | 18,20,800/- | Akshay Kumar (PI)                                   |
|            |                   | Molecule.                                                                                                                                                                                    |         |             |                                                     |

#### A Brief Summary of Ph.D. Research Work:

During my PhD course, I worked in the field of *Asymmetric Organocatalysis* where I explored different types of *Primary Amine-based Organocatalysts* for asymmetric organic transformations. All catalysts were synthesized from variety of natural acyclic amino acids and *Cinchona* alkaloids.

I have synthesized a series of primary-tertiary diamine organocatalysts derived from natural acyclic amino acids. The catalytic potential of these catalysts were explored for aldol and Michael reactions under aqueous and non-aqueous conditions. The direct aldol reaction of protected hydroxyacetone and dihydroxyacetone with aldehydes was efficiently catalyzed by diamine **1** in the presence of water. The catalyst **1** was also successfully catalyzed the direct aldol reaction of acetone/cyclohexanone with isatins using water as a solvent. Michael addition of ketones to isatylidinemalononitriles was catalyzed by diamine **1** in combination with D-CSA in dichloroethane provided 3,3'-disubstituted 2-oxindoles in highly

enantioselective manner. The 3,3'-disubstituted 2-oxindole could be transformed into spirooxindoles by reduction with NaBH<sub>4</sub>.



**4** Natural Acyclic Amino Acids Derived Diamine Organocatalysts

The catalytic potential of *Cinchona* alkaloids-primary amines were explored for pyruvatetype aldol reaction. The *Cinchona*-amine **2** effeciently catalyzes the direct aldol reaction of pyruvic aldehyde dimethyl acetal with isatins providing 3-substituted 3-hydroxy-2-oxindoles in high enantioselectivity (88-97%). Both enantiomeric 3-substituted 3-hydroxy-2-oxindoles were obtained using *pseudo*-enantiomeric organocatalysts in highly enantioselective manner.

### **URCENTIONA Alkaloids Derived Cinchona-Amine Organocatalysts**



### ✓ Application of Organocatalysts for Direct Asymmetric Aldol and Michael Reactions

