Introduction to Cryptography

by
Dr. Deep Singh

Department of Mathematics, Central University of Jammu, Jammu

Outline

- Introduction to Number Theory
- Classification of Numbers
- Various results
- Introduction to Cryptography
- Private key cryptosystems

What is Number Theory?

- Study of the behavior of positive integers $1,2,3,4,5, \ldots$ and their various combinations
- God made the numbers and rest all the work of man.
- L. Kronecker.
- Classification of natural numbers
odd $\quad 1,3,5,7,9,11, \ldots$
even $\quad 2,4,6,8,10, \ldots$
square $\quad 1,4,9,16,25,36, \ldots$
cube $\quad 1,8,27,64,125, \ldots$
prime $\quad 2,3,5,7,11,13,17,19,23,29,31, \ldots$
composite $\quad 4,6,8,9,10,12,14,15,16, \ldots$
1 (modulo 4) 1, 5, 9, 13, 17, 21, 25, ...
3 (modulo 4) 3, 7, 11, 15, 19, 23, 27, ...
perfect $\quad 6,28,496, \ldots($ sum of proper divisors $=$ number $)$
triangular $\quad 1,3,6,10,15,21, \ldots$

Triangular numbers

- can be arranged in the shape of triangles

Square numbers

- Square numbers are the numbers $1,4,9,16, \ldots$ that can be arranged in the shape of square.

Obvious queries

- Can the sum of two squares be a square?

Yes. (Pythagorean Triples)
Examples: $3^{2}+4^{2}=5^{2}, 5^{2}+12^{2}=13^{2}$ etc.

- Can the sum of two cubes be a cube ? Can the sum of two fourth powers be a fourth power?
- In general, can the sum of two $n^{\text {th }}$ powers be an $n^{\text {th }}$ power?
- No.
- Fermat's Last Theorem: $a^{n}+b^{n} \neq c^{n}, n>2$. After 358 years in 1994 Andrew Wiles has given the first successful proof of the problem and formally published in 1995.
- Proof is about 100 page long.

Ramanujan number

- A natural number that can be expressed as the sum of cubes of positive numbers in two different ways.
Example: 1729 (Ramanujan number) $1729=1^{3}+12^{3}=9^{3}+10^{3}$
- Divisors of 1729 are 1, 7, 13, 19, 91, 133, 247. (not a perfect number)

Taxicab numbers

- can be expressed as a sum of two positive cubes in n distinct ways.
- $T(1)=2=1^{3}+1^{3}$
- $T(2)=1729=\begin{aligned} & 1^{3}+12^{3} \\ & 9^{3}+10^{3}\end{aligned}$

$$
\begin{aligned}
T(3)=87539319= & 167^{3}+436^{3} \\
& 228^{3}+423^{3} \\
& 255^{3}+414^{3}
\end{aligned}
$$

$$
\begin{aligned}
T(4)=6963472309248= & 2421^{3}+19083^{3} \\
& 5436^{3}+18948^{3} \\
& 10200^{3}+18072^{3} \\
& 13322^{3}+16630^{3}
\end{aligned}
$$

Arithmetic for integers

- Modular Arithmetic: Let n be a +ve integer. Then any two integers a and b are said to be congruent modulo n i.e., $a \equiv b \bmod n$ if $n /(a-b)$.

For Example;

(1) $50 \equiv 14 \bmod 12$
(2) $2 \equiv-3 \bmod 5$

Euclid's division algorithm

- For every integer m and + ve integer n, there exist unique integers q and r such that $m=n q+r, 0 \leq r<n$. Further, $r=m \bmod n$.

Example

compute $10 \bmod 7$ and $-10 \bmod 7$. What are q and r in each case? Does $(-m) \bmod n=-(m \bmod n)$?

Cryptography

- Cryptography is a key technology in providing secure transmission of information.
- It is a branch of science which mainly deals with constructing and analyzing protocols which are related to various aspects of secure communication.
- Nowdays cryptography is at the heart of many techniques used for secure transfer of data,
- such as web based applications, online government services, online banking, mobile phones, wireless local area networks, ATM etc.

Cryptosystem

- Cryptography is associated with the security of the piece of the information being transmitted over the insecure channel.
- Cryptosystem is an algorithm required to implement special types of encryptions and decryptions.
- There are mainly two types of cryptosystems: symmetric key (private key) and asymmetric key (public key) cryptosystems.

Encryption and decryption process

The communication channel

Caesar Cipher (Private key cryptography)

- One can encrypt the original message by just shifting each symbol to some certain places.
- To encrypt the message symbols for n places, the encryption function is

$$
E_{n}(x)=(x+n) \quad \bmod 26
$$

Decryption function is

$$
D_{n}(y=x+n)=(y-n) \bmod 26
$$

G UGJJ KCCR WMS YR KGBLGEFR

- A Caeser cipher is especially easy to implement on a computer using a scheme known as arithmetic mod 26.
- English alphabets and residue modulo 26

A	B	C	D	E	F	G	H	I	J	K	L	M	N
0	1	2	3	4	5	6	7	8	9	10	11	12	13

O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25

- Numbers corresponds to alphabets

G	U	G	J	J	K	C	C	R	W	M	S	Y	R
6	20	6	9	9	10	2	2	17	22	12	18	24	17

K	G	B	L	G	E	F	R
10	6	1	11	6	4	5	17

guess

G can corresponds to I or A only $\Rightarrow \mathrm{Key}=2$ or 20

- Right shift by $2($ Key $=2)$

8	22	8	11	11	12	4	4	19	24	14	20	26	19
I	W	I	L	L	M	E	E	T	Y	O	U	A	T

12	8	3	13	8	6	7	19
M	I	D	N	I	G	H	T

I WILL MEET YOU AT MIDNIGHT

BQXOSNFQZOGX LDZMR GHCCDM VQJSHMF

- Right shift by 1 (Key = 1)

CRYPTOGRAPHY MEANS HIDDEN WRITING

QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

- Right shift by $3($ Key $=3)$

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Refrences

图 Hoffstein J．，Pipher J．，Silverman J．H．：An Introduction to Mathematical cryptography．Springer 2008.

目 Moon T．K．，Error Correction Coding：Mathematical methods and Algorithms，John wiley \＆Sons 2009.

囯 Stinson D．R．：Cryptography Theory and Practice， Chapman \＆Hall／CRC，Taylor \＆Francis Group 2006.
R Shannon C．，Communication theory of secrecy systems， Bell System Technical Journal Vol．28，pp．656－715， 1949.

Thank You

